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1. Introduction

One of the important areas of modern continuum meicl is the study of problems
related to surface and size effects. To descriesetleffects in dielectrics non-local theories
[1, 2] have been effectively used for more tharf hatentury. These theories assume that
the state of a fixed point of body depends on thtef the neighbouring points. Non-local
theories of dielectrics assume the constitutivatiehs of integral type [3] or take into
account the dependence of the body state on gradients [4], polarization gradient [5],
electric field gradients or higher electric momefusadrupoles, octupoles and so on) [6, 7].
Another approach to the formation of non-local tlyeaf dielectrics was proposed in papers
[8, 9]. This approach is based on accounting tlregss of local mass displacement [10]
apart from deformation process, thermal condugt@aitd polarization. The process of local
mass displacement was associated with the posdibletural changes within the fixed body
element. Structural displacement of the mass carftéiked body elements occurs in the
vicinity of newly created surfaces. The accountha process of local mass displacement
leads to constitutive equations typical of gradigpe theories. A complete set of equations
of local gradient theory of nonferromagnetic diélies for isotropic materials was obtained
in [8]. In the present paper, we extend the locatliggnt theory of electro-magneto-thermo-
mechanics to dielectric materials of an arbitrampimetry.

2. The basic relations of local gradient theory of dikectrics

We consider a thermo-elastic polarized nonferroratigrsolid, which is subjected to
the action of an external load, which induces meidad thermal and electromagnetic
processes and causes the ordering of body struahdeelectric charge. The Maxwell's
equations may be represented as [11, 12]

O0B=0, OMD=gp,, DxE:—‘;—?, |:I><H=Je+£o(;—ltz+\]$. 1)
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Here J =?9_t is the polarization current. Together with the gpiziing currentsJ,
caused by ordering of charge system, we will ad&e into account the non-convective and

non-diffusive mass fluxes,, of similar nature. Therefore, in the equation @fss1balance

we regard that a displacement of the mass centéxeaf body element can be caused by
convection of this element and by structural charthat are not associated with diffusive

processes. The process, which takes into accoahtreass fluxes, was referred to as a pro-
cess of local mass displacement. Taking into adahisprocess, the equation of mass con-

servation can be expressed as%% =-0O [Q PV, + ng) , wherev, is velocity of convective

displacement of the fixed body element. We intredthe vector of local mass displacement
by formula: Hm(r,t):'[;JnB(r,t')dt’. For vector J,, one obtains:J, =0, /ot. The

velocity vector v of the centre of mass is defined by relation= p’l(va+6Hm/6t).
Then, the equation of mass balance acquires astafarm

ap _
E+E|Eq,ov)—0. 2)

In order to describe the local mass displacemeathave introduced the potential.

being the energy measure of the effect of aforeimeed process on the internal energy.
Similarly to the induced electric charge [11], wavé introduced the density of induced

mass o, [8, 9]. It is required that for an arbitrary solid finite size (domain(v)), the
vector of local mass displacemelt, and density of the induced mags,, should satisfy

the following integral reIationJN)Hde :j(v)pm,,rdv [8]. From this relation we deduce
that p,,, =-0O01,,. It is easy to show that equation

—a‘;'t“”mmm:o 3)

is satisfied. This equation has the form of theseowation law of induced mass.
The momentum equation [8] and entropy balance emuft3] are as follows:

£=DEﬁD+Fe+pFD, pTd—S=—I:I|]lq+%Jq[IDT+TUS+pD. 4)

P dt dt

Here F, =peED+[JeD+%jXB+p(EIED)m, F =F+p, 0Oy, -1, 00Oy, 6,=6-
~P(En —Prbty T M) T, En=E+VXB, Jeq=Jo=PeV, Hy=Hp—H, P=P/p,
m, =MN,/P, P =Pme/P @andd.../dt=9.../0t +VvD.... In previous papers [8, 9] we have

obtained the following relation for entropy prodoat o, = Jemﬁ—‘]q dj—-zr
T T



45

A complete set of equations of local gradient thesfrdielectrics together with Maxwell
equations (1) and balance equations (2)-(4) shindtide corresponding physical and
geometric relations. In the present paper, we obtagé physical relationships of local
gradient theory of anisotropic nonferromagnetidedigics.

3. The constitutive equations for an anisotropic medim

Having taken into account the process of local ndigslacement we have obtained the
generalized Gibbs equatialf = p'6,,: dé-sdT —p [BE. + x/,d o, + T, [d (Ox,) [8], which
contains two pairs of additional state parametamely: (i) the specific density of induced
mass p,, and the potentiak/,, and (ii) the specific vector of local mass disglments,,
and vectord, . From the Gibbs relation we get the following d@otive equations

. of o of . of o _of
Oy=P—: S=¥"7—, M p__E! mn_a(Dﬂ.)'

= 5
0é oT 00, ©)
Let us decompose the free enerflyinto a series in perturbations of state parametéls
respect to the original state of homogenous amp@medium withé=0, 6,=0, T =T,
s=s,, E.=0, p=0, Oy, =0, w,=0, p,=0 and u, = i, . For small perturbations,
we retain quadratic terms in this decompositionthViithis approximatiorE, = E . Hence ,

f= fo—soé?+,u;10pm+2—;0(é(4) :é):é—%92+—;dpp,ﬁ—Flo(ﬁ:é)t?—p—lo(&p:é)pm -
—ﬁrppme—pio(f“) 8 )E —p—lo(@(3> &) my;, - (B (E) 6 - (B DDu;T)H—%()iE ) (E -
-%[)”(”“ M0x,) |00k, ) +(X°" () Q0k,) - (v° ) o, ~ (v ;) o (6)

Here 8 =T -T, is the temperature change with respect to theerée temperature. Note

that indexes in brackets denote the rank of thidi faurth valency tensors (at tensors of first,
second and third valence, these indexes are abidsit}) the formulas (5), (6) the constitutive
equations for anisotropic materials can be wrigteriollows:

6,=C¥:8-Bo-a°p, ~ED® -0Ou, G, )
s=50+CVTO‘1H+ﬂrppm+|3” D]]p;r+[3E[E+p51[§:é, (8)
Hr = o + 0P = Br 8- Y= [E—Y° ity — 07 1€, ©)
p=X" E-X""0{04,) +B50+y"py - 05" f© 8, (10)

T, =-X" 00u,) + X" E-y° 0, -B*0- 05" : €, (11)
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where C® is the fourth-rank tensor of elastic modLﬁi;is the tensor of thermal expansion

coefficients; @ is tensor of volumetric expansion caused by |ocass displacemenf;(3)
and §® are the third-rank tensors of piezoelectric arezpinass coefficientsZ,, is the
specific heat at constant volumes;, is the coefficient of dependence of entropy on

specific density of reduced mas§f and B“ are the pyroelectric and pyromass
coefficients; d, the coefficient of dependence of potentjg), on specific density of

reduced mass{‘ the tensor of dielectric susceptibilitg™ and XE™ are the tensors
characterizing the dependence of vectors of locdsdisplacement and polarization on
Ou,,; y° and yE are the coefficiens characterizing the dependehpetentiasy,, on its
gradient dy;,) and on the vector of electric field. It is notiet 1/, dy, Brps B*, yvE,
v, a2, x™, XE™ and §® are new coefficients appearing in local gradiéwoty of
thermoelasticity of nonferromagnetic dielectrics.

The fourth-rank tensor of elastic mod@® contains, in general, 81 coeficients, each
third-rank tensor of piezoelectrid® and piezomas§® coefficients contains 27 components,
each tensor of second valen@8, B, X%, X", andX ™ has 9 components and each vector
B“, BF, ¥°, y° has 3 components. It is easy to show that the rumittensor components
C®, f® §®, a” andp decreases if we take into account the symmettieobtress and
strain tensors. Indeed, from condition of tensommetry, we obtain the equalities:
Cit =Ci» Cw =Cyu» Ty = Tis 94 =94 » B, =B, anday =ay . Moreover, since the
Gibbs equation is written for the total differehtid function f , the following conditions
should be satisfied

jilk 1

2f _ 9%f 0%f _ 0%f
dede, 0g,0e ~ OEOE, OF0F
92 f B 92 f 2f 0%

= , = . 13
o(0,,)0(0,8,) 9(0e4,)0(0i,) " 9ED(D,44,)  0(D;4,)0E, 43

Using the formulas (5) and (13) we get

m

de, e ' OE OE ' 9(D) 0(04) 9(D) OE

From these formulas it follows tha,, =C,;, x; =X, xi' = x; and ;" = x;". Thus,
the number of independent components of elasticutitehsor C® decreased to 21. Each
third-rank tensor,f® and §®, has 18 independent components (they are symuetric
relatively to permutation of second and third inexand each tens@” , B, X%, X" and
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L™ has 6 independent components. Note that all coemgsrof third-rank tensor€® and
g® are equal to zero for isotropic materials. Comptsmef the second valence tensors

become:a; =y, 3;, B; =W, )(,J =X Xy = Xy s )(ijE = Xem9; While for elastic
moduli tensor C we have: Cyy =Ag;dy + /J(ijd,, +5,k5]|), A=C,,, and

1 =(Cy—Ci1)/2, where A and i are the Lamé moduli.

Along with the thermodynamic parameters of statealé® introduce thermodynamic
parameters of processes, namely, the thermodyrfiumies j, and thermodynamic forces
X, that characterize the intensity of thermodynamimcpsses and the cause of emerging
thereof. To determine these values, we rewrite éfgation for entropy production as

2
follows: o, =) j, X,. Here j, =3, X,=-T70T, j,=J, and X, =T7'E,. Since
k=1

thermodynamic forces cause thermodynamic fluxesdefine the fluxes as functions of
thermodynamic forces [13];; = (X X ) =1,2. Assuming this relation to be linear we

obtain the following kinetic equanons

LB, J,=-SL,MT+ZL. E. (13)

Jo=-=(, mT+2 < +2
T? T T? T

Here I:T , I:E , I:TE and I:Er are the kinetic coefficients (the second-rank otelgsors).

Let us consider a state of anisotropic nonferroratigrdielectrics in the absence of
mechanical, heat and electromagnetic loads. In thise there are no deformations,
perturbations of temperature and electric fieldiglectrics. From relations (7), (8) and (10)
it follows that such a system even in the abserfcexternal action will be polarized

(p' =yE o, - XE" E@El,u;,)) . In this system there are stress(efr;] =-0u, {® —dppm)
and entropy perturbatiofs’ -% =5 ,0, +B" D]:I,u,’,) , which is caused by structure changes
of a fixed body element.

Nomenclature

G is Cauchy'’s stress tensor,

€ is strain tensor,

F, r are mass force and position vectors,

E, H are electric and magnetic fields,

B, D are vectors of electric and magnetic inductions,
P is local displacement of electric charge (polar@a,
P, is density of free electric charge

€y, Mg are electric and magnetic constants,
J. is density of electric current,

t is time,
T, s are absolute temperature and specific entropy,
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o, ,0 are entropy production and distributed thermal cesir

J,, is density of heat flux,

p, U are mass density and chemical potential,

T,, S, are temperature and entropy in reference state,

0Oy, M are mass density and reduced potentialin reference state,

I, O are unit tensor and Hamilton operator.
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ROWNANIA KONSTYTUTYWNE LOKALNIE GRADIENTOW  EJ
TEORII ANIZOTROPOWYCH DIELEKTRYKOW

Streszczenie

W oparciu 0 metody termodynamiki proceséw nieodaimgch otrzymano réwnania
konstytutywny lokalnie gradientowej teorii niefemmagnetic anizotropowych dielektrykow.
Ustalono,ze proponowana teoria daje #liwos¢ do opisania niejednorodém napezen,
odksztalcé i elektrycznej polaryzacji w otoczeniu powierzchtamizotropowych dielekt-
rycznych ciat.



