WYZNACZANIE WSPÓŁCZYNNIKÓW TRANSPORTU W TRAKCIE IZOTERMICZNEGO WYSYCHANIA MATERIAŁÓW POROWATYCH

Andrzej KUCHARCZYK Politechnika Opolska, Opole, Polska

1. Wprowadzenie

W ostatnich latach podejmowanych jest wiele badań związanych z oceną i modelowaniem trwałości materiałów budowlanych, na które wpływ ma wilgoć. Badania te dotyczą m.in. dyfuzji pary wodnej, wnikania wody deszczowej, podciągania kapilarnego wody z gruntu, wysychania, zamrażania-odmrażania wody na powierzchni i w porach materiału, transportu związków agresywnych i ich krystalizacji oraz biodegradacji. Opis tych procesów jest bardzo skomplikowany i wymaga użycia złożonych modeli matematycznych, których parametry należy określić na podstawie eksperymentu.

W artykule podjęto próbę wyznaczenia współczynników opisujących proces wysychania wykorzystując w tym celu izotermę desorpcji i kinetykę wysychania. Rozważania te stanowią wstępną analizę mającą na celu przygotowanie danych do rozwiązania zadania odwrotnego, a przede wszystkim do określenia wartości początkowych.

2. Model procesu wysychania

Rozważa się ośrodek wieloskładnikowy złożony ze szkieletu materiału ($\alpha = 0$), wody ($\alpha = 1$), pary wodnej ($\alpha = 2$) i suchego powietrza ($\alpha = 3$). W przypadku każdego ze składników definiuje się gęstość pozorną ρ^{α} , jako ilość jego masy w objętości ośrodka. Dodatkowo wprowadza się koncentrację masową c_{α} i objętościową θ_{α} . Wielkości te są powiązane ze sobą zgodnie z poniższymi zależnościami:

$$\rho^{0} = \tilde{\rho}_{0} \theta_{0}, \ \rho^{1} = \tilde{\rho}_{1} \theta_{1}, \ \rho^{2} = \tilde{\rho}_{2} \theta_{23}, \ \rho^{3} = \tilde{\rho}_{3} \theta_{23},$$
(1)

$$c_{2} = \frac{\rho^{2}}{\rho^{23}}, \ c_{3} = \frac{\rho^{3}}{\rho^{23}},$$
(2)

$$\theta_0 + \theta_1 + \theta_{23} = \theta_0 + \theta_{\varepsilon} = 1, \ \rho^{23} = \rho^2 + \rho^3, \ \tilde{\rho}_{23} = \tilde{\rho}_2 + \tilde{\rho}_3, \ (3)$$

gdzie $\tilde{\rho}_{\alpha}$, θ_{ε} to gęstość właściwa i porowatość. W rozważaniach przyjmuje się, iż analizowany ośrodek jest ośrodkiem nieodkształcalnym $v_i^1 \cong 0$ oraz, że ciśnienie powietrza w porach materiału jest stałe i równe ciśnieniu atmosferycznemu $p_{23} = p^{atm}$. W takim przypadku strumienie masy wody i pary wodnej mogą być opisane zależnościami

$$\rho^{1} v_{i}^{1} = \tilde{\rho}_{1} \theta_{1} v_{i}^{1} = -\tilde{\rho}_{1} \theta_{1} k_{1} \frac{\partial p_{1}}{\partial x_{i}}, \qquad (4)$$

$$\rho^2 v_i^2 = \tilde{\rho}_2 \,\theta_{23} \,v_i^2 = -\tilde{\rho}_2 \,\theta_{23} \,k_{23} \,\frac{\partial p_{23}}{\partial x_i} - \tilde{\rho}_{23} \,\theta_{23} \,D_2 \,\frac{\partial c^2}{\partial x_i} \cong -\tilde{\rho}_{23} \,\theta_{23} \,D_2 \,\frac{\partial c^2}{\partial x_i}, \qquad (5)$$

gdzie v_i^{α} to prędkość składnika α , a współczynnik transportu wody przyjęto w formie $k_1 = k_{10} (\theta_1 / \theta_{\varepsilon})^n$. W powyższych równaniach k_{10} , k_{23} , n, p_1 , p_{23} , D_2 to kolejno: współczynnik transportu wody i powietrza, wykładnik zależny od rodzaju materiału, ciśnienie wody i powietrza w porach materiału oraz współczynnik dyfuzji.

Uwzględniając powyższe zależności bilans wilgoci przyjmuje postać

$$\frac{\partial}{\partial t} \left(\tilde{\rho}_1 \,\theta_1 + \tilde{\rho}_{23} \,c_2 \,\theta_{23} \right) - \frac{\partial}{\partial x_i} \left(\tilde{\rho}_1 \,\theta_1 \,k_1 \frac{\partial \,p_1}{\partial x_i} + \tilde{\rho}_{23} \,\theta_{23} \,D_2 \,\frac{\partial c^2}{\partial x_i} \right) = 0 \,. \tag{6}$$

Dalej przyrównując klasyczną zależność na ciśnienie kapilarne [1]

$$p^{\mathrm{kap}}(\theta_1) = p^{\mathrm{atm}} - p_2(\theta_1) = a \left(\left(\frac{\theta_1}{\theta_{\varepsilon}} \right)^{-b} - 1 \right)^{1-\frac{b}{b}}$$
(7)

z równaniem Kelvina

$$p^{\mathrm{kap}}(\theta_1) = p^{\mathrm{atm}} - p_2(\theta_1) = -\widetilde{\rho}_1 R_1 T \ln\left(\frac{\widetilde{\rho}_{23}c_2 R_1 T}{p_2^{\mathrm{mas}}}\right)$$
(8)

otrzymać można koncentrację pary wodnej w funkcji koncentracji objętościowej

$$c_{2}(\theta_{1}) = \frac{p_{2}^{\max}}{\tilde{\rho}_{23} R_{1} T} \exp\left(-\frac{a}{\tilde{\rho}_{1} R_{1} T}\left(\left(\frac{\theta_{1}}{\theta_{\varepsilon}}\right)^{-b} - 1\right)^{1-\frac{1}{b}}\right).$$
(9)

Podstawiając równanie (9) i (7) do (6) uzyskuje się z kolei, że:

$$\frac{\partial \rho^{w}(\theta_{1})}{\partial t} - \frac{\partial}{\partial x_{i}} \left(k^{\text{ef}}(\theta_{1}) \frac{\partial \theta_{1}}{\partial x_{i}} \right) = 0 , \qquad (10)$$

gdzie wprowadzono oznaczenia na efektywny współczynnik transportu i całkowitą gęstość wilgoci

$$k^{\text{ef}}(\theta_1) = \tilde{\rho}_1 \theta_1 k_1 \frac{d p_1}{d \theta_1} + \tilde{\rho}_{23} \left(\theta_{\varepsilon} - \theta_1\right) D_2 \frac{d c^2}{d \theta_1}, \qquad (11)$$

$$\rho^{w}(\theta_{1}) = \tilde{\rho}_{1} \theta_{1} + \tilde{\rho}_{23} c_{2} (\theta_{\varepsilon} - \theta_{1}).$$
(12)

3. Pierwszy etap wysychania

W niniejszym punkcie analizę ograniczono do jednokierunkowego oraz pierwszego etapu wysychania. W okresie tym odprowadzenie wody następuje z powierzchni całkowicie zawilgoconej próbki. Wysychanie na tym etapie jest szybkie, a transport wody odbywa się wyłącznie w fazie ciekłej. Rozkłady wilgoci są w przybliżeniu stałe po przekroju, a prędkość wysychania jest stała.

Przy takim założeniu funkcję opisującą koncentrację objętościową przybliżono za pomocą poniższego równania

$$\theta_1(x_1, t) = \theta_{10} - \left(\frac{a_1}{d}x_1 + a_2\right)t,$$
(13)

gdzie a_1 i a_2 to parametry równania, które należy wyznaczyć z eksperymentu, a d to grubość próbki.

Uśredniając równanie (10) po objętości próbki przy założeniu jednowymiarowego wysychania a następnie całując po czasie uzyskano

$$M^{w} = M_{0}^{w} - \frac{A_{0} a_{1}}{d} \left(k^{ef} \left(x_{1} = d, t \right) - k^{ef} \left(x_{1} = 0, t \right) \right) t^{2}, \qquad (14)$$

gdzie uwzględniono

$$M^{w} = \int_{V} \rho^{w}(\theta_{1}) dV, \quad M^{w} = \int_{V} \rho^{w}(\theta_{1}) dV, \quad \frac{\partial \theta_{1}}{\partial x_{1}} = -\frac{a_{1}}{d}t, \quad \frac{\partial^{2} \theta_{1}}{\partial x_{1}^{2}} = 0.$$
(15)

Prędkość zmiany masy w pierwszym etapie jest stała i można ją w łatwy sposób określić na podstawie eksperymentu. Oznacza to, że lewa strona równania (14) musi być liniową funkcją czasu.

4. Współczynniki modelu

Współczynniki modelu zostały wyznaczone w przypadku zaprawy cementowej, gazobetonu i cegły klinkierowej. Skorzystano tutaj z izoterm desorpcji oraz kinetyki wysychania (rys. 1). W pierwszej kolejności wyznaczono stałe *a* i *b* zgodnie z metodologią przedstawioną w [2] oraz porowatość θ_{ε} . Pierwsze dwie wielkości uzyskano przez dopasowanie równania (9) do izotermy desorpcji (rys. 1b), wykorzystując wbudowaną w programie Mathcad metodę Levenberga-Marquardta, natomiast porowatość θ_{ε} wyznaczono na podstawie jednowymiarowego wysychania zakładając, że pory przy pełnym nasyceniu są wyłącznie wypełnione wodą. Stałe a_1 , a_2 zostały określone przez dopasowanie zależności

$$\overline{\theta}_{1}(t) = \frac{1}{d} \int_{0}^{d} \theta_{1}(x_{1}, t) dx_{1}$$
(16)

do krzywej wysychania (rys. 1a). Współczynniki k_{10} otrzymano przez dopasowanie równania (15) również do krzywej wysychania (rys. 1a), gdzie $M^{w} = \tilde{\rho}_{1} \overline{\theta}_{1} V$ oraz zakładając wstępnie, że n = 0. Wszystkie uzyskane parametry przedstawiono w tablicy. 1.

Rys. 1. Pierwszy etap wysychania (a) oraz izoterma desorpcji (b) Fig. 1. The first stage of drying (a) and isotherm of desorption

Tablica 1. Wartości współczynników

	θ_{ε} [-]	a [MPa]	b [-]	<i>a</i> ₁ [-]	<i>a</i> ₂ [-]	$k_{10} \cdot 10^{-12}$ [-]
Cegła klinkierowa	0.179	81.015	4.288	0.001572	0.000270	14.173
Gazobeton	0.404	33.357	3.483	0.000866	0.000866	7068.758
Zaprawa cementowa	0.261	707.305	3.754	0.001000	0.005604	15750

5. Podsumowanie i wnioski

W artykule przedstawiono model wysychania materiałów porowatych oraz wyznaczono rozwiązanie analityczne modelu w pierwszym etapie wysychania. Na jego podstawie oraz dwóch prostych badań eksperymentalnych wyznaczono parametry charakteryzujące model.

Oznaczania symboli

a - stała materiałowa, material constant, [Pa],

*a*₁, *a*₂, *b*, *n* - stałe materiałowe, material constants [-],

 c_{α} - koncentracja masowa składnika α , mass concentration of component α , [kg/kg],

 k_{α} - współczynnik transportu składnika α , transport coefficient of component α , $[m^2/(Pa \cdot s)]$,

 p_{α} , p^{kap} , p^{atm} - ciśnienie składnika α , kapilarne i atmosferyczne, component α , capillary and atmospheric pressure [Pa],

 ρ^{α} , $\tilde{\rho}_{\alpha}$ - gęstość pozorna i właściwa składnika α , apparent and bulk density of component α , [kg/m³],

 D_{α} - współczynnik dyfuzji składnika α , diffusion coefficient of component α , [m²/s],

 R_1 - stała gazowa wody, water gas constant, [8,3145 J/(mol·K)]

T - temperatura, temperature, [K],

 θ_{ε} - porowatość, porosity, $[m^3/m^3]$,

 θ_{α} - koncentracja objętościowa składnika α , volume concentration of component α , $[m^3/m^3]$.

Literatura

- [1] Genuchten M. Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated. Soil Science Society of America Journal 44, 1980.
- [2] Baroghel-Bouny V, Mainguy M, Lassabatere T, Coussy O. Characterization and identification of equilibrium and transfer moisture properties for ordinary and highperformance cementitious materials. CemConcr Res 1999;29:1225–38.

[3]

DETERMINATION OF TRANSPORT COEFFICIENTS DURINGISOTHERMAL DRYING OF POROUS MATERIALS

Summary

The paper presents the method of determining moisture transport coefficients during drying of porous media on the basis of two simple experimental data i.e.: desorption isotherm, drying kinetics and the numerical solution.