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1. Introduction 
 

A usage of various homogenization techniques is an alternative to the experimental 

determination of material properties of fiber matrix composite material. Many analytical 

homogenization techniques are based on the equivalent eingenstrain method, which 

considers the problem of a single inclusion embedded in an infinite elastic medium. 

Homogenization has been accomplished by using various techniques including the Fourier 

series technique, variational principles etc. Most fiber matrix composites have random 

arrangement of the fibers [1] (Fig. 1). 

 

 
 

Fig. 1. Randomly distributed fibers. 

 

2. Mori-Tanaka method 
 

In the last decade, effective media theories, widely used in classical continuum 

micromechanics, have been recognized as an attractive alternative to Finite Element 

Analysis (FEA) based methods. Since its introduction the Mori-Tanaka (MT) method has 

enjoyed a considerable interest in a variety of engineering applications. These include 

classical fiber matrix composites too [2]. 

General description of the Mori-Tanaka method in the framework of elasticity is treated 

in this section. The Mori-Tanaka method takes into account the effect of phase interactions 
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on the local stresses by assuming an approximation in which the stress in each phase is 

equal to that of a single inclusion r embedded into an unbounded matrix subjected to as yet 

unknown average strain or stress matrix [2].  

The constitutive equation =C· can be written in the following matrix form: 
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Material characteristics can be determined from the following equations:   
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3. Periodic analytical model 

 
If the composite has periodic microstructure, then Fourier series can be used to estimate 

all the components of the stiffness tensor of the composite. Explicit formulas for  

a composite reinforced by long circular cylindrical fibers, which are periodically arranged 

in a square array, are written in the following way [3]: 
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where: D, a, b, c, g and Si (i=3,6,7) for composite reinforced by long circular cylindrical 

fibers can be found in [3].  
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Assuming the fiber and matrix are both isotropic, Lame constants of both materials are 

obtained by: 

  


211 


E ,   G .                                              (4)      

                   

4. Numerical homogenization 

 
A random microstructure results in transversely isotropic properties at the meso-scale. 

The analysis of composites with random microstructure can be done by using of a fictitious 

periodic microstructure (Fig. 2a). A simple alternative is to assume that the random 

microstructure is well approximated by the hexagonal microstructure (Fig. 2b). 

   
                                                      a)                            b) 

 

Fig. 2. a) Hexagonal microstructure FEA quarter model, b) Periodic square microstructure 

FEA model. 

 

In order to evaluate the elastic matrix C of the composite, the Representative Volume 

Element (RVE) is subjected to an average strain. The volume average of the strain in the 

RVE equals the applied strain [4,5]: 
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The components of the tensor C are determined by solving elastic models of RVE with 

parameters (a1, a2, a3) subjected to the boundary conditions. By using a unit value of applied 

strain, it is possible to compute the stress field, whose average gives the required 

components of the elastic matrix as [4]: 
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The coefficients in C are found by setting a different problem for each column of C. 
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5. Example of homogenization 
 

In the example, the material characteristics E1, E2, 12, 23 and G12 were computed for  

a unidirectional composite with isotropic fibers (Ef =230 [GPa], f =0.3) and isotropic 

matrix (Em=3.2 [GPa], m=0.4). The fiber volume fraction and the fiber diameter were 

assumed as =0.6 and df =7 [m].  

 

6. Conclusions 
 

The paper compares analytical and numerical approaches of homogenization of 

unidirectional lamina consists of fiber matrix composite material. In the frame of numerical 

homogenization the best results were obtained from the hexagonal microstructure model. In 

the frame of analytical homogenization the best results were obtained from the periodic 

microstructure model. These two models are suitable for analytical approach of modelling 

of unidirectional lamina [6]. The results obtained from these models are very similar.  

The example is solved by programs Heat and Elasticity Properties (Mori-Tanaka 

method) [1], program MATLAB (Periodic analytical model) and program ANSYS with the 

help of Finite Element Method. The elastic properties of the homogenized material are 

shown in the Table 1. 

 

Table 1. Summary of results. 

 Periodic  

numerical 

model 

Hexagon. 

numerical 

model 

Periodic  

analytical 

model 

Mori 

Tanaka 

model 

E1 [GPa] 139.378 139.355 139.291 139.295 

E2 [GPa]   20.454   14.008   14.262   10.998 

12 [-]     0.33     0.36     0.36     0.26 

23 [-]     0.33     0.52     0.51     0.49 

G12 [GPa]     4.771     4.391     4.407     4.265 
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Denotations of symbols 
 

C – elasticity tensor, [Pa],  

D, a, b, c, g, Si – coefficients for composite reinforced by long circular cylindrical fibers, 

E – modulus of elasticity, [Pa] 

E11 – modulus of elasticity in longitudinal direction, [Pa], 

E22 – modulus of elasticity in transversial direction, [Pa], 

G – shear modulus of elasticity, [Pa], 

G12 – in-plane shear modulus, [Pa], 
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G23 – transverse shear modulus, [Pa], 

 – strain tensor, [-], 

(m)
,  

(m) 
– Lamé constants of matrix, [Pa], 

(f )
,  

(f ) 
– Lamé constants of fibers, [Pa], 

 – Poisson ratio, [-], 

12 – in-plane Poisson ratio, [-], 

23 – transverse Poisson ratio, [-], 

 – stress tensor, [Pa], 

 – fiber volume fraction, [-]. 

 

Bibliography 
 

[1] Ţmindák M., Novák P., Melicher R.: Numerical simulation of 3D elastoplastic inclusion 

problems using boundary meshless methods, Mechanics of composites materials and 

structures, 2008, pp. 32-43. 

[2] Vorel J., Šejnoha M.: Documentation for HELP program, Theoretical manual and user 

guide, Czech Technical University in Prague, Faculty of Civil Engineering, 2008. 

[3] Luciano R., Barbero E.J.: Formulas for the Stiffness of Composites with Periodic 

Microstructure, Int. Journal of Solids Structures, 31 (21), 1995, pp. 2933-2944.  

[4] Barbero E.J.: Finite element analysis of composite materials, CRC Press, Taylor & 

Francis Group, 2008. 

[5] Sumec J., Hruštinec Ľ.: Modelling of some effects in the viscoelastic selected type of 

materials, Proceedings of the conference on New Trends in Static and Dynamics of 

Buildings, Bratislava, 2015.  

[6] Kormaníková E., Kotrasová K.: Elastic mechanical properties of fiber reinforced 

composite materials, Chemical Journal, 105 (17), 2011, pp. 758-762. 

 

Summary 

 

The paper deals with analytical and numerical homogenization of unidirectional fiber 

matrix composite. There are described the Mori-Tanaka method, periodic analytical model 

and numerical periodic and hexagonal models. The example of homogenization is solved by 

programs Heat and Elasticity Properties, MATLAB and ANSYS.  The obtained results are 

summarized in the table and compared to each other. 
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